Engineering -- an endless frontier
      home technology engineering branches engineer history essays bibliography  
aero   biological   chemical   civil   computer   electrical   environmental   mechanical   nuclear   systems
Biotechnology and biological engineering
Biotechnology and bioengineering have two dimensions.  First, they use living organisms to make desired products, as in using microbes to produce drugs.  Second, they use whatever means for promoting life, as in making equipment for novel methods of medical diagnosis and drug delivery.  They involve the cooperation of many disciplines.  As advances in molecular biology and nanotechnology make more biological phenomena susceptible to reliable control,  bioengineering and biotechnology are poised to soar in the twenty-first century.

Biochemical and bioprocess engineering

Ashton, G. 2001.  Growing pains for biopharmaceuticals.  Nature Biotechnology, 19: 307-11.

Bailey, J. E. 1998.  Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities.  Biotechnology Progress. 14: 8-20.

Burger, A. 1976.  Biomedical sciences: the past 100 years.  Chemical and Engineering News, April, 146-62.

Elder, A. I. 1970.  The history of penicillin production.  Chemical Engineering Progress Symposium, 66, No. 100.

Hobby, G. L. 1985.  Penicillin: Meeting the Challenge.  New Haven: Yale University Press.

Niiler, E. 2001. OECD says industrial biotech not realizing potentials.  Nature Biotechnology, 19: 493-4.

Reiss, T. 2001.  Drug discovery of the future: the implications of the human genome project.  Trends in Biotechnology, 19(12): 496-9.

Schügerl, K.  Development of bioreaction engineering.  Advances in Biochemical Processing and Biotechnology, 70: 41-76.

Shashan, J. C. 1982.  The Enchanted Ring: The Untold Story of Penicillin.  Cambridge: MIT Press.

Biomolecular engineering

Burton, S. G., Cowan, D. A., and Moodley, J. M. 2002.  The search for the ideal biocatalyst.  Nature Biotechnology, 20: 37-45.

Ryu, D. D. and Nam, D. H. 2000.  Recent progress in biomolecular engineering.  Biotechnology Progress, 16: 2-16.

Metabolic engineering - working with cells

Bailey, J. E. 1991.  Towards a science of metabolic engineering.  Science, 252: 1668-91.

Bailey, J. E. 1995.  Chemical engineering of cellular processes.  Chemical Engineering Science, 50: 4091-4108.

Baily, J. E. 1999.  Emergence and evolution of metabolic engineering: from spontaneous mutation to gene therapy.  In Metabolic Engineering, S. Y. Lee and E. T. Papoutsakis, eds.  New York: Marcel, pp. xi-xv.

Cascante, M., et al.  2002.  Metabolic control analysis in drug discovery and disease.  Nature Biotechnology, 20: 243-9.  

Khosla, C. and Keasling, J. D. 2003.  Metabolic engineering for drug discovery and development.  Nature Review: Drug Discovery, 2: 1019-1025.

Stephanopoulos, G. 2002.  Metabolic engineering by genetic shuffling.  Nature Biotechnology, 20: 666-8.

Stephanopoulos, G. 2002.  Metabolic engineering: perspective of a chemical engineer.  AIChE Journal, 48: 920-6.

Stephanopoulos, G. and Gill, R. T. 2001.  After a decade of progress, an expanded role for metabolic engineering. Advances in Biochemical Engineering/Biotechnology, 73: 1-8.

Taubes, G. 2002.  The virtual cell.  Technology Review, 105(3): 63-70.

Tissue engineering

Bianco, P. and Robey, P. G. 2001.  Nature, 414: 118-20.

Garr, D. 2001.  The human body shop.  Technology Review, April, 73-9.

Griffith, L. G. and Naughton, G. 2002.  Tissue engineering – current challenges and expanding opportunities.  Science, 295: 1009-14.

Langer, R. 2000.  Biomaterials: status, challenges, and perspectives.  AIChE Journal, 46: 1286-9.

Langer, R. and Vacanti, J. P. 1993.  Tissue engineering.  Science, 260: 920-6.

Lanza, R. L., Langer, R., and Vacanti, J. eds. 2000.  Principles of Tissue Engineering, 2nd ed. San Diego: Academic Press.

Lysaght, M. J. and Reyes, J. 2001.  The growth of tissue engineering.  Tissue Engineering, 7: 485-93.

Saltzman, W. M. and Olbricht, W. L. 2000.  Building drug discovery into tissue engineering.  Nature Reviews, 1177-26.

Scientific American, April, 1999.  Special issue on “The promise of tissue engineering.”

Strain, A. J. and Neuberger, J. M. 2001. A bioartificial liver – state of the art.  Science, 295: 1005-7.

Vacanti, J. P. 2001.  Looking back and looking ahead.  Tissue Engineering, 7: 107-9.

Biomedical engineering

Fagette, P. 1997.  Tracking the historical development of biomedical engineering: the 1960s and 1970s.  IEEE Engineering in Medicine and Biology Magazine, 16(5): 164-72.

Geselowitz, D. B. and Geselowitz, M. N. 1999.  Bioelectrical engineering and the “inside story” of the electrical century.  Proceedings of the IEEE, 87: 1842-6.

Ghista, D. N. 2000.  Biomedical engineering: yesterday, today, and tomorrow.  IEEE Engineering in Medicine and Biology, 19(6): 23-8.

Hench, L. L. and Polak, J. M. 2002.  Third-generation biomedical materials.  Science, 295: 1014-7.

Hendee, W. R. 2002.  The National Institute of Biomedical Imaging and Bioengineering: history, status, and potential impact.  Annals of Biomedical Engineering, 30: 2-10.

Langer, R. 1995.  Biomaterials and biomedical engineering.  Chemical Engineering Science, 50: 4109-21.

Lin, J. C. 1999.  Applying telecommunication technology to health-care delivery.  IEEE Engineering in Medicine and Biology Magazine, 18(4): 28-39.

Morari, M. and Gentilini, A. 2001. Challenges and opportunities in process control: biomedical processes.  AIChE Journal, 47: 2140-4.

Nebekee, F. 2002.  Golden accomplishments in biomedical engineering.  IEEE Engineering in Medicine and Biology Magazine, 21(3): 17-47.

Rosen, J., Soltania, H., Redeff, R. J., and Laub, D. R. 1996.  Evolution of virtual reality: from planning to performing surgery.  IEEE Engineering in Medicine and Biology Magazine, 15(3): 16-21.

Wolbarst, A. B. 1999.  Looking Within: How X-Ray, CT, MRI, Ultrasound, and Other Medical Images Are Created, and How They Help Physicians Save Lives.  Berkeley: University of California Press.

Engineering in biology and biotechnology

Azuaje, F. ed. 2001  Genomes, man, machines.  Special report in IEEE Engineering in Medicine and Biology, July/Aug. 18-21.

Bud, R. 1993.  The Uses of Life: A History of Biotechnology.  New York: Cambridge University Press.

Chovan, T. and Guttman, A. 2002.  Microfabricated devices in biotechnology and biochemical processing.  Trends in Biotechnology, 20(3): 116-22.

Fitch, J. P. and Sokhansanj, B. 2000.  Genomic engineering: moving beyond DNA sequence to function.  Proceedings of the IEEE, 88: 1949-70.

Gaskell, G. and Bauer, M. W. eds. 2001.  Biotechnology 1996-2000: the Years of Controversy.

Hodgson, J. 2000.  Gene sequencing’s industrial revolution.  IEEE Spectrum, 37(10): 36-42.

Lahteenmaki, R. and Fletcher, L. 2002.  Public biotechnology 2001.  Nature Biotechnology, 20: 551-5.

Lander, E. S. and Weinberg, R. A. 2000.  Genomics: journey to the center of biology.  Science, 287: 1777-82.

Meldrum, D. 2000.  Automation for genomics.  Genome Research, 10: 1081-92, 1288-303.

Saviotti, P. P. 2000.  The changing marketplace of bioinformatics.  Nature Biotechnology, 18: 1247-9.

Service, R. F. 2001.  High-speed biologists search for gold in proteins.  Science, 294: 2074-7.

Smith, J. E.. 1996.  Biotechnology, 3rd ed.  New York: Cambridge University Press.

Spengler, S. J. 2000.  Bioinformatics in the information age.  Science, 287: 1221-3.

Wu, T. D. 2001.  Bioinformatics in the post-genomic era.  Trends in Biotechnology, 19L 479-80.